Mapping global financial risks under climate change

Mapping global financial risks under climate change
  • Carney, M. Breaking the Tragedy of the Horizon—Climate Change and Financial Stability (Bank of England, 2015); https://www.bankofengland.co.uk/speech/2015/breaking-the-tragedy-of-the-horizon-climate-change-and-financial-stability

  • A Call for Action: Climate Change as a Source of Financial Risk (NGFS, 2019).

  • Conceptual Note on Short-Term Climate Scenarios (NGFS, 2023).

  • Blake, E.S. et al. Costliest US Tropical Cyclones Tables Updated (National Hurricane Center, 2021); https://www.nhc.noaa.gov/news/UpdatedCostliest.pdf

  • Weather and Climate Extremes in Asia Killed Thousands, Displaced Millions and Cost Billions in 2020 (World Meteorological Organization, 2021); https://wmo.int/media/news/weather-and-climate-extremes-asia-killed-thousands-displaced-millions-and-cost-billions-2020#:~:text=Geneva%2C%2026%20October%202021%20(WMO,toll%20on%20infrastructure%20and%20ecosystems

  • Special Report: Update to the Economic Costs of Natural Disasters in Australia (Deloitte, 2021); https://www.deloitte.com/content/dam/assets-zone1/au/en/docs/services/economics/deloitte-au-economics-abr-natural-disasters-061021.pdf

  • IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021); https://doi.org/10.1017/9781009157896

  • Weitzman, M. L. On modeling and interpreting the economics of catastrophic climate change. Rev. Econ. Stat. 91, 1–19 (2009).

    Article 

    Google Scholar 

  • Pindyck, R. S. Climate change policy: what do the models tell us? J. Econ. Lit. 51, 860–872 (2013).

    Article 

    Google Scholar 

  • Bressan, G., Duranović, A., Monasterolo, I. & Battiston, S. Asset-level assessment of climate physical risk matters for adaptation finance. Nat. Commun. 15, 5371 (2024).

    Article 
    CAS 

    Google Scholar 

  • Le Guenedal, T., Drobinski, P. & Tankov, P. Measuring and pricing cyclone-related physical risk under changing climate. Amundi Research Working Paper 111 (2021); https://research-center.amundi.com/files/nuxeo/dl/683eaa33-0ded-41e5-a604-8bea583d4def?inline=

  • Mandel, A. et al. Risks on global financial stability induced by climate change: the case of flood risks. Climatic Change 166, 4 (2021).

    Article 

    Google Scholar 

  • Calabrese, R., Dombrowski, T., Mandel, A., Pace, R. K. & Zanin, L. Impacts of extreme weather events on mortgage risks and their evolution under climate change: a case study on florida. Eur. J. Oper. Res. 314, 377–392 (2024).

    Article 

    Google Scholar 

  • Dietz, S., Bowen, A., Dixon, C. & Gradwell, P. Climate value at risk of global financial assets. Nat. Clim. Change 6, 676–679 (2016).

    Article 

    Google Scholar 

  • Hain, L. I., Koelbel, J. F. & Leippold, M. Let’s get physical: comparing metrics of physical climate risk. Financ. Res. Lett. 46, 102406 (2022).

    Article 

    Google Scholar 

  • Guide on Climate-Related and Environmental Risks: Supervisory Expectations Relating to Risk Management and Disclosure (European Central Bank, 2020).

  • Basel Committee on Banking Supervision Basel III: Finalising Post-crisis Reforms (Bank for International Settlements, 2021).

  • Bertram, C. et al. NGFS Climate Scenario Database: Technical Documentation v2.2 (NGFS, 2021).

  • MSCI ACWI Index (USD) (MSCI, 2021); https://www.msci.com/documents/10199/8d97d244-4685-4200-a24c-3e2942e3adeb

  • Mahony, M. & Timmer, M. P. Output, input and productivity measures at the industry level: the EU KLEMS database. Econ. J. 119, 374–403 (2009).

    Article 

    Google Scholar 

  • Multi-hazard Loss Estimation Methodology, Earthquake Model, Hazus-mh 2.1, Technical Manual (FEMA, 2013).

  • IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer L. A.) (IPCC, 2014); https://www.ipcc.ch/report/ar5/syr/

  • Damodaran, A. Damodaran Online (accessed 6 January 2024).

  • Hallegatte, S., Hourcade, J.-C. & Dumas, P. Why economic dynamics matter in assessing climate change damages: illustration on extreme events. Ecol. Econ. 62, 330–340 (2007).

    Article 

    Google Scholar 

  • Oosterhaven, J. & Többen, J. Wider economic impacts of heavy flooding in germany: a non-linear programming approach. Spat. Econ. Anal. 12, 404–428 (2017).

    Article 

    Google Scholar 

  • Semieniuk, G. et al. Stranded fossil-fuel assets translate to major losses for investors in advanced economies. Nat. Clim. Change 12, 532–538 (2022).

    Article 

    Google Scholar 

  • Schubert, J. E., Mach, K. J. & Sanders, B. F. National-scale flood hazard data unfit for urban risk management. Earths Future 12, 2024–004549 (2024).

    Article 

    Google Scholar 

  • Battiston, S., Monasterolo, I., Riahi, K. & Ruijven, B. J. Accounting for finance is key for climate mitigation pathways. Science 372, 918–920 (2021).

    Article 
    CAS 

    Google Scholar 

  • Moss, R. H. et al. The next generation of scenarios for climate change research and assessment. Nature 463, 747–756 (2010).

    Article 
    CAS 

    Google Scholar 

  • Warszawski, L. et al. The Inter-sectoral Impact Model Intercomparison Project (ISI–MIP): project framework. Proc. Natl Acad. Sci. USA 111, 3228–3232 (2014).

    Article 
    CAS 

    Google Scholar 

  • Frieler, K. et al. Assessing the impacts of 1.5 °C global warming–simulation protocol of the Inter-sectoral Impact Model Intercomparison Project (ISIMIP2b). Geosci. Model Dev. 10, 4321–4345 (2017).

    Article 

    Google Scholar 

  • Dufresne, J.-L. et al. Climate change projections using the IPSLl-CM5 Earth system model: from CMIP3 to CMIP5. Clim. Dyn. 40, 2123–2165 (2013).

    Article 

    Google Scholar 

  • Aznar-Siguan, G. & Bresch, D. N. Climada v1: a global weather and climate risk assessment platform. Geosci. Model Dev. 12, 3085–3097 (2019).

    Article 

    Google Scholar 

  • Knapp, K. R., Kruk, M. C., Levinson, D. H., Diamond, H. J. & Neumann, C. J. The International Best Track Archive for Climate Stewardship (IBTRACS) unifying tropical cyclone data. Bull. Am. Meteorol. Soc. 91, 363–376 (2010).

    Article 

    Google Scholar 

  • Knutson, T. R. et al. Global projections of intense tropical cyclone activity for the late twenty-first century from dynamical downscaling of CMIP5/RCP4.5 scenarios. J. Clim. 28, 7203–7224 (2015).

    Article 

    Google Scholar 

  • Emanuel, K. Global warming effects on US hurricane damage. Weather Clim. Soc. 3, 261–268 (2011).

    Article 

    Google Scholar 

  • Synthetic Windstorm Events for Europe from 1986 to 2011 (Copernicus Climate Change Service Climate Data Store, 2022); https://doi.org/10.24381/cds.ce973f02

  • Feser, F. et al. Storminess over the North Atlantic and northwestern European review. Q. J. R. Meteorol. Soc. 141, 350–382 (2015).

    Article 

    Google Scholar 

  • Ranson, M., Tarquinio, L. & Lew, A. Modeling the Impact of Climate Change on Extreme Weather Losses. Environmental Economics Working Paper Series 02 (US Environmental Protection Agency, 2016); https://www.epa.gov/sites/default/files/2016-05/documents/2016-02.pdf

  • Feuerstein, B. et al. Towards an improved wind speed scale and damage description adapted for central europe. Atmos. Res. 100, 547–564 (2011).

    Article 

    Google Scholar 

  • Ward, P. J. et al. Aqueduct Floods Methodology (World Resources Institute, 2020).

  • Winsemius, H., Van Beek, L., Jongman, B., Ward, P. & Bouwman, A. A framework for global river flood risk assessments. Hydrol. Earth Syst. Sci. 17, 1871–1892 (2013).

    Article 

    Google Scholar 

  • Huizinga, J. et al. Global Flood Depth–Damage Dunctions: Methodology and the Database with Guidelines (Joint Research Centre, 2017).

  • Fire Burned Area from 2001 to Present Derived from Satellite Observations (Copernicus Climate Change Service (Climate Data Store, 2019); https://doi.org/10.24381/cds.f333cf85

  • Land Cover CCI Product User Guide Version 2.0 (ESA, 2017). http://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf

  • Pettinari, M.L., Lizundia-Loiola, J. & Chuvieco, E. ESA CCI ECV Fire Disturbance: D4.2 Product User Guide – MODIS v.1.0. (ESA, 2020); https://www.esa-fire-cci.org/documents

  • Sullivan, A. et al. Spreading Like Wildfire: The Rising Threat of Extraordinary Landscape Fires (United Nations Environment Programme, 2022); https://wedocs.unep.org/bitstream/handle/20.500.11822/38372/wildfire_RRA.pdf

  • Nadim, F., Kjekstad, O., Peduzzi, P., Herold, C. & Jaedicke, C. Global landslide and avalanche hotspots. Landslides 3, 159–173 (2006).

    Article 

    Google Scholar 

  • Hicks, D. A way to estimate the frequency of rainfall-induced mass movements (note). J. Hydrol. 33, 59–67 (1995).

  • Crozier, M. J. Deciphering the effect of climate change on landslide activity: a review. Geomorphology 124, 260–267 (2010).

    Article 

    Google Scholar 

  • Dasgupta, S. et al. Effects of climate change on combined labour productivity and supply: an empirical, multi-model study. Lancet Planet. Health 5, 455–465 (2021).

    Article 

    Google Scholar 

  • Stull, R. Wet-bulb temperature from relative humidity and air temperature. J. Appl. Meteorol. Climatol. 50, 2267–2269 (2011).

    Article 

    Google Scholar 

  • Kjellstrom, T. et al. Occupational Heat Stress: Contribution to WHO Project on “Global assessment of the health impacts of climate change”, Which Started in 2009 (HEIT, 2014).

  • Santos, J.A. & Viswanathan, S.V. Bank Syndicates and Liquidity Provision (NBER, 2020).

  • Merton, R. C. On the pricing of corporate debt: the risk structure of interest rates. J. Financ. 29, 449–470 (1974).

    Google Scholar 

  • Battiston, S., Mandel, A., Monasterolo, I. & Roncoroni, A. Climate credit risk and corporate valuation. SSRN (2023).

  • Garbarino, N. & Guin, B. High water, no marks? Biased lending after extreme weather. J. Financ. Stab. 54, 100874 (2021).

    Article 

    Google Scholar 

  • Nguyen, D. D., Ongena, S., Qi, S. & Sila, V. Climate change risk and the cost of mortgage credit. Rev. Financ. 26, 1509–1549 (2022).

    Article 

    Google Scholar 

  • Deghi, A. et al. Global Financial Stability Report: Markets in the Time of COVID-19 (IMF, 2021).

  • Gostlow, G. Anything goes: pricing physical climate risk. SSRN (2024).

  • Acharya, V.V., Johnson, T., Sundaresan, S. & Tomunen, T. Is Physical Climate Risk Priced? Evidence from Regional Variation in Exposure to Heat Stress (NBER, 2022).

  • Kruttli, M.S., Roth Tran, B. & Watugala, S.W. Pricing Poseidon: extreme weather uncertainty and firm return dynamics. SSRN (2023).

  • Braun, A., Braun, J. & Weigert, F. Extreme weather risk and the cross-section of stock returns. SSRN (2021).

  • Briere, M., Duranovic, A., Huynh, K., Monasterolo, I. & Ramelli, S. Does the Stock Market Price Physical Climate Risks? (Amundi, 2024).

  • Hong, H., Li, F. W. & Xu, J. Climate risks and market efficiency. J. Econ. 208, 265–281 (2019).

    Article 

    Google Scholar 

  • link